Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stationary solutions to the stochastic Burgers equation on the line (1910.07464v3)

Published 16 Oct 2019 in math.PR, math-ph, math.AP, and math.MP

Abstract: We consider invariant measures for the stochastic Burgers equation on $\mathbb{R}$, forced by the derivative of a spacetime-homogeneous Gaussian noise that is white in time and smooth in space. An invariant measure is indecomposable, or extremal, if it cannot be represented as a convex combination of other invariant measures. We show that for each $a\in\mathbb{R}$, there is a unique indecomposable law of a spacetime-stationary solution with mean $a$, in a suitable function space. We also show that solutions starting from spatially-decaying perturbations of mean-$a$ periodic functions converge in law to the extremal space-time stationary solution with mean $a$ as time goes to infinity.

Summary

We haven't generated a summary for this paper yet.