Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algorithms and Hardness Results for the Maximum Balanced Connected Subgraph Problem (1910.07305v4)

Published 16 Oct 2019 in cs.DS and math.CO

Abstract: The Balanced Connected Subgraph problem (BCS) was recently introduced by Bhore et al. (CALDAM 2019). In this problem, we are given a graph $G$ whose vertices are colored by red or blue. The goal is to find a maximum connected subgraph of $G$ having the same number of blue vertices and red vertices. They showed that this problem is NP-hard even on planar graphs, bipartite graphs, and chordal graphs. They also gave some positive results: BCS can be solved in $O(n3)$ time for trees and $O(n + m)$ time for split graphs and properly colored bipartite graphs, where $n$ is the number of vertices and $m$ is the number of edges. In this paper, we show that BCS can be solved in $O(n2)$ time for trees and $O(n3)$ time for interval graphs. The former result can be extended to bounded treewidth graphs. We also consider a weighted version of BCS (WBCS). We prove that this variant is weakly NP-hard even on star graphs and strongly NP-hard even on split graphs and properly colored bipartite graphs, whereas the unweighted counterpart is tractable on those graph classes. Finally, we consider an exact exponential-time algorithm for general graphs. We show that BCS can be solved in $2{n/2}n{O(1)}$ time. This algorithm is based on a variant of Dreyfus-Wagner algorithm for the Steiner tree problem.

Citations (4)

Summary

We haven't generated a summary for this paper yet.