Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Continuous-Domain Assignment Flows (1910.07287v1)

Published 16 Oct 2019 in math.DS, cs.GT, math.OC, and nlin.AO

Abstract: Assignment flows denote a class of dynamical models for contextual data labeling (classification) on graphs. We derive a novel parametrization of assignment flows that reveals how the underlying information geometry induces two processes for assignment regularization and for gradually enforcing unambiguous decisions, respectively, that seamlessly interact when solving for the flow. Our result enables to characterize the dominant part of the assignment flow as a Riemannian gradient flow with respect to the underlying information geometry. We consider a continuous-domain formulation of the corresponding potential and develop a novel algorithm in terms of solving a sequence of linear elliptic PDEs subject to a simple convex constraint. Our result provides a basis for addressing learning problems by controlling such PDEs in future work.

Citations (11)

Summary

We haven't generated a summary for this paper yet.