Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tutorial on NLP-Inspired Network Embedding (1910.07212v1)

Published 16 Oct 2019 in cs.SI and cs.LG

Abstract: This tutorial covers a few papers in the field of network embedding. Network embedding is a collective term for techniques for mapping graph nodes to vectors of real numbers in a multidimensional space. To be useful, a good embedding should preserve the structure of the graph. The vectors can then be used as input to various network and graph analysis tasks, such as link prediction. The papers discussed develop methods for the online learning of such embeddings, and include DeepWalk, LINE, node2vec, struc2vec and megapath2vec. These new methods and developments in online learning of network embeddings have major applications for the analysis of graphs and networks, including online social networks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Boaz Shmueli (6 papers)

Summary

We haven't generated a summary for this paper yet.