Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HiGitClass: Keyword-Driven Hierarchical Classification of GitHub Repositories (1910.07115v2)

Published 16 Oct 2019 in cs.LG, cs.CL, cs.SE, and stat.ML

Abstract: GitHub has become an important platform for code sharing and scientific exchange. With the massive number of repositories available, there is a pressing need for topic-based search. Even though the topic label functionality has been introduced, the majority of GitHub repositories do not have any labels, impeding the utility of search and topic-based analysis. This work targets the automatic repository classification problem as keyword-driven hierarchical classification. Specifically, users only need to provide a label hierarchy with keywords to supply as supervision. This setting is flexible, adaptive to the users' needs, accounts for the different granularity of topic labels and requires minimal human effort. We identify three key challenges of this problem, namely (1) the presence of multi-modal signals; (2) supervision scarcity and bias; (3) supervision format mismatch. In recognition of these challenges, we propose the HiGitClass framework, comprising of three modules: heterogeneous information network embedding; keyword enrichment; topic modeling and pseudo document generation. Experimental results on two GitHub repository collections confirm that HiGitClass is superior to existing weakly-supervised and dataless hierarchical classification methods, especially in its ability to integrate both structured and unstructured data for repository classification.

Citations (40)

Summary

We haven't generated a summary for this paper yet.