Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conjugate Bayesian Unit-level Modeling of Count Data Under Informative Sampling Designs (1910.07074v1)

Published 15 Oct 2019 in stat.ME

Abstract: Unit-level models for survey data offer many advantages over their area-level counterparts, such as potential for more precise estimates and a natural benchmarking property. However two main challenges occur in this context: accounting for an informative survey design and handling non-Gaussian data types. The pseudo-likelihood approach is one solution to the former, and conjugate multivariate distribution theory offers a solution to the latter. By combining these approaches, we attain a unit-level model for count data that accounts for informative sampling designs and includes fully Bayesian model uncertainty propagation. Importantly, conjugate full conditional distributions hold under the pseudo-likelihood, yielding an extremely computationally efficient approach. Our method is illustrated via an empirical simulation study using count data from the American Community Survey public-use microdata sample.

Summary

We haven't generated a summary for this paper yet.