Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On adversarial patches: real-world attack on ArcFace-100 face recognition system (1910.07067v3)

Published 15 Oct 2019 in cs.CV, cs.CR, and cs.LG

Abstract: Recent works showed the vulnerability of image classifiers to adversarial attacks in the digital domain. However, the majority of attacks involve adding small perturbation to an image to fool the classifier. Unfortunately, such procedures can not be used to conduct a real-world attack, where adding an adversarial attribute to the photo is a more practical approach. In this paper, we study the problem of real-world attacks on face recognition systems. We examine security of one of the best public face recognition systems, LResNet100E-IR with ArcFace loss, and propose a simple method to attack it in the physical world. The method suggests creating an adversarial patch that can be printed, added as a face attribute and photographed; the photo of a person with such attribute is then passed to the classifier such that the classifier's recognized class changes from correct to the desired one. Proposed generating procedure allows projecting adversarial patches not only on different areas of the face, such as nose or forehead but also on some wearable accessory, such as eyeglasses.

Citations (50)

Summary

We haven't generated a summary for this paper yet.