Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compact Network Training for Person ReID (1910.07038v3)

Published 15 Oct 2019 in cs.CV and cs.LG

Abstract: The task of person re-identification (ReID) has attracted growing attention in recent years leading to improved performance, albeit with little focus on real-world applications. Most SotA methods are based on heavy pre-trained models, e.g. ResNet50 (~25M parameters), which makes them less practical and more tedious to explore architecture modifications. In this study, we focus on a small-sized randomly initialized model that enables us to easily introduce architecture and training modifications suitable for person ReID. The outcomes of our study are a compact network and a fitting training regime. We show the robustness of the network by outperforming the SotA on both Market1501 and DukeMTMC. Furthermore, we show the representation power of our ReID network via SotA results on a different task of multi-object tracking.

Citations (10)

Summary

We haven't generated a summary for this paper yet.