Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Affect-aware thermal comfort provision in intelligent buildings (1910.06824v2)

Published 3 Oct 2019 in cs.HC, eess.IV, and eess.SP

Abstract: Predominant thermal comfort provision technologies are energy-hungry, and yet they perform crudely because they overlook the requisite precursors to thermal comfort. They also fail to exclusively cool or heat the parts of the body (e.g., the wrist, the feet, and the head) that influence the most a person's thermal comfort satisfaction. Instead, they waste energy by heating or cooling the whole room. This research investigates the influence of neck-coolers on people's thermal comfort perception and proposes an effective method that delivers thermal comfort depending on people's heart rate variability (HRV). Moreover, because thermal comfort is idiosyncratic and depends on unforeseeable circumstances, only person-specific thermal comfort models are adequate for this task. Unfortunately, using person-specific models would be costly and inflexible for deployment in, e.g., a smart building because a system that uses person-specific models would require collecting extensive training data from each person in the building. As a compromise, we devise a hybrid, cost-effective, yet satisfactory technique that derives a personalized person-specific-like model from samples collected from a large population. For example, it was possible to double the accuracy of a generic model (from 47.77% to 96.11%) using only 400 person-specific calibration samples. Finally, we propose a practical implementation of a real-time thermal comfort provision system that uses this strategy and highlighted its advantages and limitations.

Citations (4)

Summary

We haven't generated a summary for this paper yet.