Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cellularity of centrosymmetric matrix algebras and Frobenius extensions (1910.06485v1)

Published 15 Oct 2019 in math.RA and math.RT

Abstract: Centrosymmetric matrices of order $n$ over an arbitrary algebra $R$ form a subalgebra of the full $n\times n$ matrix algebra over $R$. It is called the centrosymmetric matrix algebra of order $n$ over $R$ and denoted by $S_n(R)$. We prove (1) $S_n(R)$ is Morita equivalent to $S_2(R)$ if $n$ is even, and to $S_3(R)$ if $n\ge 3$ is odd; (2) the full $n\times n$ matrix algebra over $R$ is a separable Frobenius extension of $S_n(R)$; and (3) if $R$ is a commutative ring, then $S_n(R)$ is a cellular $R$-algebra in the sense of Graham-Lehrer for all $n\ge 1$.

Summary

We haven't generated a summary for this paper yet.