Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transition fronts in unbounded domains with multiple branches (1910.06455v1)

Published 14 Oct 2019 in math.AP

Abstract: This paper is concerned with the existence and uniqueness of transition fronts of a general reaction-diffusion-advection equation in domains with multiple branches. In this paper, every branch in the domain is not necessary to be straight and we use the notions of almost-planar fronts to generalize the standard planar fronts. Under some assumptions of existence and uniqueness of almost-planar fronts with positive propagating speeds in extended branches, we prove the existence of entire solutions emanating from some almost-planar fronts in some branches. Then, we get that these entire solutions converge to almost-planar fronts in some of the rest branches as time increases if no blocking occurs in these branches. Finally, provided by the complete propagation of every front-like solution emanating from one almost-planar front in every branch, we prove that there is only one type of transition fronts, that is, the entire solutions emanating from some almost-planar fronts in some branches and converging to almost-planar fronts in the rest branches.

Summary

We haven't generated a summary for this paper yet.