Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algorithm and hardness results on neighborhood total domination in graphs (1910.06423v1)

Published 14 Oct 2019 in cs.DM and math.CO

Abstract: A set $D\subseteq V$ of a graph $G=(V,E)$ is called a neighborhood total dominating set of $G$ if $D$ is a dominating set and the subgraph of $G$ induced by the open neighborhood of $D$ has no isolated vertex. Given a graph $G$, \textsc{Min-NTDS} is the problem of finding a neighborhood total dominating set of $G$ of minimum cardinality. The decision version of \textsc{Min-NTDS} is known to be \textsf{NP}-complete for bipartite graphs and chordal graphs. In this paper, we extend this \textsf{NP}-completeness result to undirected path graphs, chordal bipartite graphs, and planar graphs. We also present a linear time algorithm for computing a minimum neighborhood total dominating set in proper interval graphs. We show that for a given graph $G=(V,E)$, \textsc{Min-NTDS} cannot be approximated within a factor of $(1-\varepsilon)\log |V|$, unless \textsf{NP$\subseteq$DTIME($|V|{O(\log \log |V|)}$)} and can be approximated within a factor of $O(\log \Delta)$, where $\Delta$ is the maximum degree of the graph $G$. Finally, we show that \textsc{Min-NTDS} is \textsf{APX}-complete for graphs of degree at most $3$.

Summary

We haven't generated a summary for this paper yet.