Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Phase separation and scaling in correlation structures of financial markets (1910.06242v3)

Published 10 Oct 2019 in q-fin.ST and cond-mat.stat-mech

Abstract: Financial markets, being spectacular examples of complex systems, display rich correlation structures among price returns of different assets. The correlation structures change drastically, akin to phase transitions in physical phenomena, as do the influential stocks (leaders) and sectors (communities), during market events like crashes. It is crucial to detect their signatures for timely intervention or prevention. Here we use eigenvalue decomposition and eigen-entropy, computed from eigen-centralities of different stocks in the cross-correlation matrix, to extract information about the disorder in the market. We construct a `phase space', where different market events (bubbles, crashes, etc.) undergo phase separation and display order-disorder transitions. An entropy functional exhibits scaling behavior. We propose a generic indicator that facilitates the continuous monitoring of the internal structure of the market -- important for managing risk and stress-testing the financial system. Our methodology would help in understanding and foreseeing tipping points or fluctuation patterns in complex systems.

Summary

We haven't generated a summary for this paper yet.