Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized space-time fractional dynamics in networks and lattices (1910.05949v1)

Published 14 Oct 2019 in cond-mat.stat-mech

Abstract: We analyze generalized space-time fractional motions on undirected networks and lattices. The continuous-time random walk (CTRW) approach of Montroll and Weiss is employed to subordinate a space fractional walk to a generalization of the time-fractional Poisson renewal process. This process introduces a non-Markovian walk with long-time memory effects and fat-tailed characteristics in the waiting time density. We analyze generalized space-time fractional diffusion' in the infinite $\it d$-dimensional integer lattice $\it \mathbb{Z}^d$. We obtain in the diffusion limit amacroscopic' space-time fractional diffusion equation. Classical CTRW models such as with Laskin's fractional Poisson process and standard Poisson process which occur as special cases are also analyzed. The developed generalized space-time fractional CTRW model contains a four-dimensional parameter space and offers therefore a great flexibility to describe real-world situations in complex systems.

Summary

We haven't generated a summary for this paper yet.