Stallings automata for free-times-abelian groups: intersections and index
Abstract: We extend the classical Stallings theory (describing subgroups of free groups as automata) to direct products of free and abelian groups: after introducing enriched automata (i.e., automata with extra abelian labels), we obtain an explicit bijection between subgroups and a certain type of such enriched automata, which - as it happens in the free group - is computable in the finitely generated case. This approach provides a neat geometric description of (even non finitely generated) intersections of finitely generated subgroups within this non-Howson family. In particular, we give a geometric solution to the subgroup intersection problem and the finite index problem, providing recursive bases and transversals respectively.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.