Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Regularized Sparse Gaussian Processes (1910.05843v2)

Published 13 Oct 2019 in stat.ML and cs.LG

Abstract: Gaussian processes are a flexible Bayesian nonparametric modelling approach that has been widely applied but poses computational challenges. To address the poor scaling of exact inference methods, approximation methods based on sparse Gaussian processes (SGP) are attractive. An issue faced by SGP, especially in latent variable models, is the inefficient learning of the inducing inputs, which leads to poor model prediction. We propose a regularization approach by balancing the reconstruction performance of data and the approximation performance of the model itself. This regularization improves both inference and prediction performance. We extend this regularization approach into latent variable models with SGPs and show that performing variational inference (VI) on those models is equivalent to performing VI on a related empirical Bayes model.

Summary

We haven't generated a summary for this paper yet.