Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Conservative Finite Element Method for the Incompressible Euler Equations with Variable Density (1910.05707v1)

Published 13 Oct 2019 in math.NA, cs.NA, and physics.comp-ph

Abstract: We construct a finite element discretization and time-stepping scheme for the incompressible Euler equations with variable density that exactly preserves total mass, total squared density, total energy, and pointwise incompressibility. The method uses Raviart-Thomas or Brezzi-Douglas-Marini finite elements to approximate the velocity and discontinuous polynomials to approximate the density and pressure. To achieve exact preservation of the aforementioned conserved quantities, we exploit a seldom-used weak formulation of the momentum equation and a second-order time-stepping scheme that is similar, but not identical, to the midpoint rule. We also describe and prove stability of an upwinded version of the method. We present numerical examples that demonstrate the order of convergence of the method.

Citations (19)

Summary

We haven't generated a summary for this paper yet.