Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

IoT or NoT: Identifying IoT Devices in a ShortTime Scale (1910.05647v1)

Published 12 Oct 2019 in cs.NI

Abstract: In recent years the number of IoT devices in home networks has increased dramatically. Whenever a new device connects to the network, it must be quickly managed and secured using the relevant security mechanism or QoS policy. Thus a key challenge is to distinguish between IoT and NoT devices in a matter of minutes. Unfortunately, there is no clear indication of whether a device in a network is an IoT. In this paper, we propose different classifiers that identify a device as IoT or non-IoT, in a short time scale, and with high accuracy. Our classifiers were constructed using machine learning techniques on a seen (training) dataset and were tested on an unseen (test) dataset. They successfully classified devices that were not in the seen dataset with accuracy above 95%. The first classifier is a logistic regression classifier based on traffic features. The second classifier is based on features we retrieve from DHCP packets. Finally, we present a unified classifier that leverages the advantages of the other two classifiers. We focus on the home-network environment, but our classifiers are also applicable to enterprise networks.

Citations (24)

Summary

We haven't generated a summary for this paper yet.