Sobolev regularity of polar fractional maximal functions (1910.05590v2)
Abstract: We study the Sobolev regularity on the sphere $\mathbb{S}d$ of the uncentered fractional Hardy-Littlewood maximal operator $\widetilde{\mathcal{M}}{\beta}$ at the endpoint $p=1$, when acting on polar data. We first prove that if $q=\frac{d}{d-\beta}$, $0<\beta<d$ and $f$ is a polar $W{1,1}(\mathbb{S}d)$ function, we have $$|\nabla \widetilde{\mathcal{M}}{\beta}f|q\lesssim{d,\beta}|\nabla f|1.$$ We then prove that the map $$f\mapsto \big | \nabla \widetilde{\mathcal{M}}{\beta}f \big |$$ is continuous from $W{1,1}(\mathbb{S}d)$ to $Lq(\mathbb{S}d)$ when restricted to polar data. Our methods allow us to give a new proof of the continuity of the map $f\mapsto |\nabla \widetilde{M}{\beta}f|$ from $W{1,1}{\text{rad}}(\mathbb{R}d)$ to $Lq(\mathbb{R}d)$. Moreover, we prove that a conjectural local boundedness for the centered fractional Hardy-Littlewood maximal operator $M_{\beta}$ implies the continuity of the map $f\mapsto |\nabla M_{\beta}f|$ from $W{1,1}$ to $Lq$, in the context of polar functions on $\mathbb{S}d$ and radial functions on $\mathbb{R}d$.