Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Concentration-compactness principle of singular Trudinger-Moser inequality involving $N$-Finsler-Laplacian operator (1910.05417v2)

Published 11 Oct 2019 in math.FA

Abstract: In this paper, suppose $F: \mathbb{R}{N} \rightarrow [0, +\infty)$ be a convex function of class $C{2}(\mathbb{R}{N} \backslash {0})$ which is even and positively homogeneous of degree 1. We establish the Lions type concentration-compactness principle of singular Trudinger-Moser Inequalities involving $N$-Finsler--Laplacian operator. Let $\Omega\subset \mathbb{R}{N}(N\geq 2)$ be a smooth bounded domain. ${u_n}\subset W_0{1, N}(\Omega)$ be a sequence such that anisotropic Dirichlet norm$\int_{\Omega}FN (\nabla u_n)dx=1$, $u_n \rightharpoonup u \not \equiv 0$ weakly in $W_0{1, N}(\Omega)$. Then for any $0 < p < p_N(u):=(1-\int_{\Omega}FN (\nabla u)dx){-\frac{1}{N-1}},$ we have $$ \int_{\Omega}\frac{e{\lambda_{N}(1-\frac{\beta}{N})p |u_n|{\frac{N}{N-1}}}}{F{o}(x){\beta}}dx<+\infty, $$ where $0\leq\beta <N$, $\lambda_{N}=N{\frac{N}{N-1}} \kappa_{N}{\frac{1}{N-1}}$ and $\kappa_{N}$ is the volume of a unit Wulff ball. This conclusion fails if $p \geq p_N(u)$. Furthermore, we also obtain the corresponding concentration-compactness principle in the entire Euclidean space $\mathbb{R}{N}$.

Summary

We haven't generated a summary for this paper yet.