Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ORCCA: Optimal Randomized Canonical Correlation Analysis (1910.05384v3)

Published 11 Oct 2019 in cs.LG and stat.ML

Abstract: Random features approach has been widely used for kernel approximation in large-scale machine learning. A number of recent studies have explored data-dependent sampling of features, modifying the stochastic oracle from which random features are sampled. While proposed techniques in this realm improve the approximation, their suitability is often verified on a single learning task. In this paper, we propose a task-specific scoring rule for selecting random features, which can be employed for different applications with some adjustments. We restrict our attention to Canonical Correlation Analysis (CCA), and we provide a novel, principled guide for finding the score function maximizing the canonical correlations. We prove that this method, called ORCCA, can outperform (in expectation) the corresponding Kernel CCA with a default kernel. Numerical experiments verify that ORCCA is significantly superior than other approximation techniques in the CCA task.

Citations (5)

Summary

We haven't generated a summary for this paper yet.