Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Iterated Decomposition of Biased Permutations Via New Bounds on the Spectral Gap of Markov Chains (1910.05184v1)

Published 11 Oct 2019 in cs.DS and math.PR

Abstract: The spectral gap of a Markov chain can be bounded by the spectral gaps of constituent "restriction" chains and a "projection" chain, and the strength of such a bound is the content of various decomposition theorems. In this paper, we introduce a new parameter that allows us to improve upon these bounds. We further define a notion of orthogonality between the restriction chains and "complementary" restriction chains. This leads to a new Complementary Decomposition theorem, which does not require analyzing the projection chain. For $\epsilon$-orthogonal chains, this theorem may be iterated $O(1/\epsilon)$ times while only giving away a constant multiplicative factor on the overall spectral gap. As an application, we provide a $1/n$-orthogonal decomposition of the nearest neighbor Markov chain over $k$-class biased monotone permutations on [$n$], as long as the number of particles in each class is at least $C\log n$. This allows us to apply the Complementary Decomposition theorem iteratively $n$ times to prove the first polynomial bound on the spectral gap when $k$ is as large as $\Theta(n/\log n)$. The previous best known bound assumed $k$ was at most a constant.

Summary

We haven't generated a summary for this paper yet.