Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PipeMare: Asynchronous Pipeline Parallel DNN Training (1910.05124v2)

Published 9 Oct 2019 in cs.DC, cs.LG, and stat.ML

Abstract: Pipeline parallelism (PP) when training neural networks enables larger models to be partitioned spatially, leading to both lower network communication and overall higher hardware utilization. Unfortunately, to preserve the statistical efficiency of sequential training, existing PP techniques sacrifice hardware efficiency by decreasing pipeline utilization or incurring extra memory costs. In this paper, we investigate to what extent these sacrifices are necessary. We devise PipeMare, a simple yet robust training method that tolerates asynchronous updates during PP execution without sacrificing utilization or memory, which allows efficient use of fine-grained pipeline parallelism. Concretely, when tested on ResNet and Transformer networks, asynchrony enables PipeMare to use up to $2.7\times$ less memory or get $4.3\times$ higher pipeline utilization, with similar model quality, when compared to state-of-the-art synchronous PP training techniques.

Citations (105)

Summary

We haven't generated a summary for this paper yet.