Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Old Dog Learns New Tricks: Randomized UCB for Bandit Problems (1910.04928v2)

Published 11 Oct 2019 in cs.LG and stat.ML

Abstract: We propose $\tt RandUCB$, a bandit strategy that builds on theoretically derived confidence intervals similar to upper confidence bound (UCB) algorithms, but akin to Thompson sampling (TS), it uses randomization to trade off exploration and exploitation. In the $K$-armed bandit setting, we show that there are infinitely many variants of $\tt RandUCB$, all of which achieve the minimax-optimal $\widetilde{O}(\sqrt{K T})$ regret after $T$ rounds. Moreover, for a specific multi-armed bandit setting, we show that both UCB and TS can be recovered as special cases of $\tt RandUCB$. For structured bandits, where each arm is associated with a $d$-dimensional feature vector and rewards are distributed according to a linear or generalized linear model, we prove that $\tt RandUCB$ achieves the minimax-optimal $\widetilde{O}(d \sqrt{T})$ regret even in the case of infinitely many arms. Through experiments in both the multi-armed and structured bandit settings, we demonstrate that $\tt RandUCB$ matches or outperforms TS and other randomized exploration strategies. Our theoretical and empirical results together imply that $\tt RandUCB$ achieves the best of both worlds.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Sharan Vaswani (35 papers)
  2. Abbas Mehrabian (31 papers)
  3. Audrey Durand (25 papers)
  4. Branislav Kveton (98 papers)
Citations (25)

Summary

We haven't generated a summary for this paper yet.