Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Straggler-Agnostic and Communication-Efficient Distributed Primal-Dual Algorithm for High-Dimensional Data Mining (1910.04235v1)

Published 9 Oct 2019 in cs.LG and stat.ML

Abstract: Recently, reducing communication time between machines becomes the main focus of distributed data mining. Previous methods propose to make workers do more computation locally before aggregating local solutions in the server such that fewer communication rounds between server and workers are required. However, these methods do not consider reducing the communication time per round and work very poor under certain conditions, for example, when there are straggler problems or the dataset is of high dimension. In this paper, we target to reduce communication time per round as well as the required communication rounds. We propose a communication-efficient distributed primal-dual method with straggler-agnostic server and bandwidth-efficient workers. We analyze the convergence property and prove that the proposed method guarantees linear convergence rate to the optimal solution for convex problems. Finally, we conduct large-scale experiments in simulated and real distributed systems and experimental results demonstrate that the proposed method is much faster than compared methods.

Citations (4)

Summary

We haven't generated a summary for this paper yet.