Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the adequacy of untuned warmup for adaptive optimization (1910.04209v3)

Published 9 Oct 2019 in cs.LG, cs.NE, and stat.ML

Abstract: Adaptive optimization algorithms such as Adam are widely used in deep learning. The stability of such algorithms is often improved with a warmup schedule for the learning rate. Motivated by the difficulty of choosing and tuning warmup schedules, recent work proposes automatic variance rectification of Adam's adaptive learning rate, claiming that this rectified approach ("RAdam") surpasses the vanilla Adam algorithm and reduces the need for expensive tuning of Adam with warmup. In this work, we refute this analysis and provide an alternative explanation for the necessity of warmup based on the magnitude of the update term, which is of greater relevance to training stability. We then provide some "rule-of-thumb" warmup schedules, and we demonstrate that simple untuned warmup of Adam performs more-or-less identically to RAdam in typical practical settings. We conclude by suggesting that practitioners stick to linear warmup with Adam, with a sensible default being linear warmup over $2 / (1 - \beta_2)$ training iterations.

Citations (68)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com