Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Training of Fair Predictive Models (1910.04109v3)

Published 9 Oct 2019 in stat.ML, cs.LG, and stat.ME

Abstract: Recently there has been sustained interest in modifying prediction algorithms to satisfy fairness constraints. These constraints are typically complex nonlinear functionals of the observed data distribution. Focusing on the path-specific causal constraints proposed by Nabi and Shpitser (2018), we introduce new theoretical results and optimization techniques to make model training easier and more accurate. Specifically, we show how to reparameterize the observed data likelihood such that fairness constraints correspond directly to parameters that appear in the likelihood, transforming a complex constrained optimization objective into a simple optimization problem with box constraints. We also exploit methods from empirical likelihood theory in statistics to improve predictive performance by constraining baseline covariates, without requiring parametric models. We combine the merits of both proposals to optimize a hybrid reparameterized likelihood. The techniques presented here should be applicable more broadly to fair prediction proposals that impose constraints on predictive models.

Citations (13)

Summary

We haven't generated a summary for this paper yet.