2000 character limit reached
Variance reduction for Markov chains with application to MCMC (1910.03643v2)
Published 8 Oct 2019 in math.ST, cs.LG, math.PR, stat.CO, stat.ML, and stat.TH
Abstract: In this paper we propose a novel variance reduction approach for additive functionals of Markov chains based on minimization of an estimate for the asymptotic variance of these functionals over suitable classes of control variates. A distinctive feature of the proposed approach is its ability to significantly reduce the overall finite sample variance. This feature is theoretically demonstrated by means of a deep non asymptotic analysis of a variance reduced functional as well as by a thorough simulation study. In particular we apply our method to various MCMC Bayesian estimation problems where it favourably compares to the existing variance reduction approaches.