Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simulation of the multiphase configuration and phase transitions with quantum walks utilizing a step-dependent coin (1910.02949v2)

Published 7 Oct 2019 in quant-ph

Abstract: Quantum walks are versatile simulators of topological phases and phase transitions as observed in condensed matter physics. Here, we utilize a step dependent coin in quantum walks and investigate what topological phases we can simulate with it, their topological invariants, bound states and possibility of phase transitions. These quantum walks simulate non-trivial phases characterized by topological invariants (winding number) $\pm 1$ which are similar to the ones observed in topological insulators and polyacetylene. We confirm that the number of phases and their corresponding bound states increase step dependently. In contrast, the size of topological phase and distance between two bound states are decreasing functions of steps resulting into formation of multiple phases as quantum walks proceed (multiphase configuration). We show that, in the bound states, the winding number and group velocity are ill-defined, and the second moment of the probability density distribution in position space undergoes an abrupt change. Therefore, there are phase transitions taking place over the bound states and between two topological phases with different winding numbers.

Citations (7)

Summary

We haven't generated a summary for this paper yet.