Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ViP: Video Platform for PyTorch (1910.02793v1)

Published 7 Oct 2019 in cs.CV, cs.LG, and eess.IV

Abstract: This work presents the Video Platform for PyTorch (ViP), a deep learning-based framework designed to handle and extend to any problem domain based on videos. ViP supports (1) a single unified interface applicable to all video problem domains, (2) quick prototyping of video models, (3) executing large-batch operations with reduced memory consumption, and (4) easy and reproducible experimental setups. ViP's core functionality is built with flexibility and modularity in mind to allow for smooth data flow between different parts of the platform and benchmarking against existing methods. In providing a software platform that supports multiple video-based problem domains, we allow for more cross-pollination of models, ideas and stronger generalization in the video understanding research community.

Summary

We haven't generated a summary for this paper yet.