Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FIS-GAN: GAN with Flow-based Importance Sampling (1910.02519v4)

Published 6 Oct 2019 in cs.LG and stat.ML

Abstract: Generative Adversarial Networks (GAN) training process, in most cases, apply Uniform or Gaussian sampling methods in the latent space, which probably spends most of the computation on examples that can be properly handled and easy to generate. Theoretically, importance sampling speeds up stochastic optimization in supervised learning by prioritizing training examples. In this paper, we explore the possibility of adapting importance sampling into adversarial learning. We use importance sampling to replace Uniform and Gaussian sampling methods in the latent space and employ normalizing flow to approximate latent space posterior distribution by density estimation. Empirically, results on MNIST and Fashion-MNIST demonstrate that our method significantly accelerates GAN's optimization while retaining visual fidelity in generated samples.

Citations (3)

Summary

We haven't generated a summary for this paper yet.