Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Universal Equivariant Set Networks (1910.02421v2)

Published 6 Oct 2019 in cs.LG and stat.ML

Abstract: Using deep neural networks that are either invariant or equivariant to permutations in order to learn functions on unordered sets has become prevalent. The most popular, basic models are DeepSets [Zaheer et al. 2017] and PointNet [Qi et al. 2017]. While known to be universal for approximating invariant functions, DeepSets and PointNet are not known to be universal when approximating \emph{equivariant} set functions. On the other hand, several recent equivariant set architectures have been proven equivariant universal [Sannai et al. 2019], [Keriven et al. 2019], however these models either use layers that are not permutation equivariant (in the standard sense) and/or use higher order tensor variables which are less practical. There is, therefore, a gap in understanding the universality of popular equivariant set models versus theoretical ones. In this paper we close this gap by proving that: (i) PointNet is not equivariant universal; and (ii) adding a single linear transmission layer makes PointNet universal. We call this architecture PointNetST and argue it is the simplest permutation equivariant universal model known to date. Another consequence is that DeepSets is universal, and also PointNetSeg, a popular point cloud segmentation network (used eg, in [Qi et al. 2017]) is universal. The key theoretical tool used to prove the above results is an explicit characterization of all permutation equivariant polynomial layers. Lastly, we provide numerical experiments validating the theoretical results and comparing different permutation equivariant models.

Citations (57)

Summary

We haven't generated a summary for this paper yet.