Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global stability in a competitive infection-age structured model (1910.01890v2)

Published 4 Oct 2019 in math.AP and math.DS

Abstract: We study a competitive infection-age structured SI model between two diseases. The well-posedness of the system is handled by using integrated semigroups theory, while the existence and the stability of disease-free or endemic equilibria are ensured, depending on the basic reproduction number $R_0x$ and $R_0y$ of each strain. We then exhibit Lyapunov functionals to analyse the global stability and we prove that the disease-free equilibrium is globally asymptotically stable whenever $\max{R_0x, R_0y}\leq 1$. With respect to explicit basin of attraction, the competitive exclusion principle occurs in the case where $R_0x\neq R_0y$ and $\max{R_0x,R_0y}>1$, meaning that the strain with the largest $R_0$ persists and eliminates the other strain. In the limit case $R_0x=R0_y>1$, an infinite number of endemic equilibria exists and constitute a globally attractive set.

Summary

We haven't generated a summary for this paper yet.