Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The influence of data regularity in the critical exponent for a class of semilinear evolutions equations (1910.01823v1)

Published 4 Oct 2019 in math.AP

Abstract: In this paper we find the critical exponent for the global existence (in time) of small data solutions to the Cauchy problem for the semilinear dissipative evolution equations % [ u_{tt}+(-\Delta)\delta u_{tt}+(-\Delta)\alpha u+(-\Delta)\theta u_t=|u_t|p, \quad t\geq 0,\,\, x\in\Rn,] % with $p>1$, $2\theta \in [0, \alpha]$ and $\delta \in (\theta,\alpha]$. We show that, under additional regularity $\left(H{\alpha+\delta}(\Rn)\cap L{m}(\Rn) \right)\times \left(H{2\delta}(\Rn)\cap L{m}(\Rn)\right) $ for initial data, with $m\in (1,2]$, the critical exponent is given by $p_c=1+\frac{2m\theta}{n}$. The nonexistence of global solutions in the subcritical cases is proved, in the case of integers parameters $\alpha, \delta, \theta$, by using the test function method (under suitable sign assumptions on the initial data).

Summary

We haven't generated a summary for this paper yet.