Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Q-Network for Angry Birds (1910.01806v2)

Published 4 Oct 2019 in cs.AI

Abstract: Angry Birds is a popular video game in which the player is provided with a sequence of birds to shoot from a slingshot. The task of the game is to destroy all green pigs with maximum possible score. Angry Birds appears to be a difficult task to solve for artificially intelligent agents due to the sequential decision-making, non-deterministic game environment, enormous state and action spaces and requirement to differentiate between multiple birds, their abilities and optimum tapping times. We describe the application of Deep Reinforcement learning by implementing Double Dueling Deep Q-network to play Angry Birds game. One of our main goals was to build an agent that is able to compete with previous participants and humans on the first 21 levels. In order to do so, we have collected a dataset of game frames that we used to train our agent on. We present different approaches and settings for DQN agent. We evaluate our agent using results of the previous participants of AIBirds competition, results of volunteer human players and present the results of AIBirds 2018 competition.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Ekaterina Nikonova (7 papers)
  2. Jakub Gemrot (2 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.