Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Duality between Network Flows and Network Lasso (1910.01805v2)

Published 4 Oct 2019 in cs.LG, math.OC, and stat.ML

Abstract: Many applications generate data with an intrinsic network structure such as time series data, image data or social network data. The network Lasso (nLasso) has been proposed recently as a method for joint clustering and optimization of machine learning models for networked data. The nLasso extends the Lasso from sparse linear models to clustered graph signals. This paper explores the duality of nLasso and network flow optimization. We show that, in a very precise sense, nLasso is equivalent to a minimum-cost flow problem on the data network structure. Our main technical result is a concise characterization of nLasso solutions via existence of certain network flows. The main conceptual result is a useful link between nLasso methods and basic graph algorithms such as clustering or maximum flow.

Citations (8)

Summary

We haven't generated a summary for this paper yet.