Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimax Bounds for Distributed Logistic Regression (1910.01625v1)

Published 3 Oct 2019 in cs.IT, math.IT, math.ST, and stat.TH

Abstract: We consider a distributed logistic regression problem where labeled data pairs $(X_i,Y_i)\in \mathbb{R}d\times{-1,1}$ for $i=1,\ldots,n$ are distributed across multiple machines in a network and must be communicated to a centralized estimator using at most $k$ bits per labeled pair. We assume that the data $X_i$ come independently from some distribution $P_X$, and that the distribution of $Y_i$ conditioned on $X_i$ follows a logistic model with some parameter $\theta\in\mathbb{R}d$. By using a Fisher information argument, we give minimax lower bounds for estimating $\theta$ under different assumptions on the tail of the distribution $P_X$. We consider both $\ell2$ and logistic losses, and show that for the logistic loss our sub-Gaussian lower bound is order-optimal and cannot be improved.

Citations (5)

Summary

We haven't generated a summary for this paper yet.