Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient training of energy-based models via spin-glass control (1910.01592v4)

Published 3 Oct 2019 in cond-mat.stat-mech, cond-mat.dis-nn, and cs.LG

Abstract: We introduce a new family of energy-based probabilistic graphical models for efficient unsupervised learning. Its definition is motivated by the control of the spin-glass properties of the Ising model described by the weights of Boltzmann machines. We use it to learn the Bars and Stripes dataset of various sizes and the MNIST dataset, and show how they quickly achieve the performance offered by standard methods for unsupervised learning. Our results indicate that the standard initialization of Boltzmann machines with random weights equivalent to spin-glass models is an unnecessary bottleneck in the process of training. Furthermore, this new family allows for very easy access to low-energy configurations, which points to new, efficient training algorithms. The simplest variant of such algorithms approximates the negative phase of the log-likelihood gradient with no Markov chain Monte Carlo sampling costs at all, and with an accuracy sufficient to achieve good learning and generalization.

Citations (7)

Summary

We haven't generated a summary for this paper yet.