Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Twisted loop transgression and higher Jandl gerbes over finite groupoids (1910.01422v1)

Published 3 Oct 2019 in math.QA, math.AT, math.CT, and math.RT

Abstract: Given a double cover $\pi: \mathcal{G} \rightarrow \hat{\mathcal{G}}$ of finite groupoids, we explicitly construct twisted loop transgression maps, $\tau_{\pi}$ and $\tau_{\pi}{ref}$, thereby associating to a Jandl $n$-gerbe $\hat{\lambda}$ on $\hat{\mathcal{G}}$ a Jandl $(n-1)$-gerbe $\tau_{\pi}(\hat{\lambda})$ on the quotient loop groupoid of $\mathcal{G}$ and an ordinary $(n-1)$-gerbe $\tau{ref}_{\pi}(\hat{\lambda})$ on the unoriented quotient loop groupoid of $\mathcal{G}$. For $n =1,2$, we interpret the character theory (resp. centre) of the category of Real $\hat{\lambda}$-twisted $n$-vector bundles over $\hat{\mathcal{G}}$ in terms of flat sections of the $(n-1)$-vector bundle associated to $\tau_{\pi}{ref}(\hat{\lambda})$ (resp. the Real $(n-1)$-vector bundle associated to $\tau_{\pi}(\hat{\lambda})$). We relate our results to Real versions of twisted Drinfeld doubles and pointed fusion categories and to discrete torsion in orientifold string and M-theory.

Summary

We haven't generated a summary for this paper yet.