Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum tensor singular value decomposition with applications to recommendation systems (1910.01262v2)

Published 3 Oct 2019 in quant-ph, cs.LG, cs.SY, eess.SY, and math.OC

Abstract: In this paper, we present a quantum singular value decomposition algorithm for third-order tensors inspired by the classical algorithm of tensor singular value decomposition (t-svd) and then extend it to order-$p$ tensors. It can be proved that the quantum version of the t-svd for a third-order tensor $\mathcal{A} \in \mathbb{R}{N\times N \times N}$ achieves the complexity of $\mathcal{O}(N{\rm polylog}(N))$, an exponential speedup compared with its classical counterpart. As an application, we propose a quantum algorithm for recommendation systems which incorporates the contextual situation of users to the personalized recommendation. We provide recommendations varying with contexts by measuring the output quantum state corresponding to an approximation of this user's preferences. This algorithm runs in expected time $\mathcal{O}(N{\rm polylog}(N){\rm poly}(k)),$ if every frontal slice of the preference tensor has a good rank-$k$ approximation. At last, we provide a quantum algorithm for tensor completion based on a different truncation method which is tested to have a good performance in dynamic video completion.

Citations (3)

Summary

We haven't generated a summary for this paper yet.