Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic Group Cohesiveness Detection With Multi-modal Features (1910.01197v1)

Published 2 Oct 2019 in cs.CV

Abstract: Group cohesiveness is a compelling and often studied composition in group dynamics and group performance. The enormous number of web images of groups of people can be used to develop an effective method to detect group cohesiveness. This paper introduces an automatic group cohesiveness prediction method for the 7th Emotion Recognition in the Wild (EmotiW 2019) Grand Challenge in the category of Group-based Cohesion Prediction. The task is to predict the cohesive level for a group of people in images. To tackle this problem, a hybrid network including regression models which are separately trained on face features, skeleton features, and scene features is proposed. Predicted regression values, corresponding to each feature, are fused for the final cohesive intensity. Experimental results demonstrate that the proposed hybrid network is effective and makes promising improvements. A mean squared error (MSE) of 0.444 is achieved on the testing sets which outperforms the baseline MSE of 0.5.

Citations (10)

Summary

We haven't generated a summary for this paper yet.