Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Task-Relevant Adversarial Imitation Learning (1910.01077v2)

Published 2 Oct 2019 in cs.LG, cs.AI, cs.RO, and stat.ML

Abstract: We show that a critical vulnerability in adversarial imitation is the tendency of discriminator networks to learn spurious associations between visual features and expert labels. When the discriminator focuses on task-irrelevant features, it does not provide an informative reward signal, leading to poor task performance. We analyze this problem in detail and propose a solution that outperforms standard Generative Adversarial Imitation Learning (GAIL). Our proposed method, Task-Relevant Adversarial Imitation Learning (TRAIL), uses constrained discriminator optimization to learn informative rewards. In comprehensive experiments, we show that TRAIL can solve challenging robotic manipulation tasks from pixels by imitating human operators without access to any task rewards, and clearly outperforms comparable baseline imitation agents, including those trained via behaviour cloning and conventional GAIL.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (9)
  1. Konrad Zolna (24 papers)
  2. Scott Reed (32 papers)
  3. Alexander Novikov (30 papers)
  4. Sergio Gomez Colmenarejo (24 papers)
  5. David Budden (29 papers)
  6. Serkan Cabi (15 papers)
  7. Misha Denil (36 papers)
  8. Nando de Freitas (98 papers)
  9. Ziyu Wang (137 papers)
Citations (58)