Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Never Worse, Mostly Better: Stable Policy Improvement in Deep Reinforcement Learning (1910.01062v3)

Published 2 Oct 2019 in cs.LG, cs.AI, and stat.ML

Abstract: In recent years, there has been significant progress in applying deep reinforcement learning (RL) for solving challenging problems across a wide variety of domains. Nevertheless, convergence of various methods has been shown to suffer from inconsistencies, due to algorithmic instability and variance, as well as stochasticity in the benchmark environments. Particularly, despite the fact that the agent's performance may be improving on average, it may abruptly deteriorate at late stages of training. In this work, we study methods for enhancing the agent's learning process, by providing conservative updates with respect to either the obtained history or a reference benchmark policy. Our method, termed EVEREST, obtains high confidence improvements via confidence bounds of a reference policy. Through extensive empirical analysis we demonstrate the benefit of our approach in terms of both performance and stabilization, with significant improvements in continuous control and Atari benchmarks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.