Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Proof of two supercongruences conjectured by Z.-W. Sun (1910.00779v2)

Published 2 Oct 2019 in math.NT and math.CO

Abstract: In this paper, we prove two supercongruences conjectured by Z.-W. Sun via the Wilf-Zeilberger method. One of them is, for any prime $p>3$, \begin{align*} \sum_{n=0}{p-1}\frac{6n+1}{256n}\binom{2n}n3&\equiv p(-1){(p-1)/2}-p3E_{p-3}\pmod{p4}. \end{align*} In fact, this supercongruence is a generalization of a supercongruence of van Hamme.

Summary

We haven't generated a summary for this paper yet.