Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generating Fair Universal Representations using Adversarial Models (1910.00411v7)

Published 27 Sep 2019 in cs.LG and stat.ML

Abstract: We present a data-driven framework for learning fair universal representations (FUR) that guarantee statistical fairness for any learning task that may not be known a priori. Our framework leverages recent advances in adversarial learning to allow a data holder to learn representations in which a set of sensitive attributes are decoupled from the rest of the dataset. We formulate this as a constrained minimax game between an encoder and an adversary where the constraint ensures a measure of usefulness (utility) of the representation. The resulting problem is that of censoring, i.e., finding a representation that is least informative about the sensitive attributes given a utility constraint. For appropriately chosen adversarial loss functions, our censoring framework precisely clarifies the optimal adversarial strategy against strong information-theoretic adversaries; it also achieves the fairness measure of demographic parity for the resulting constrained representations. We evaluate the performance of our proposed framework on both synthetic and publicly available datasets. For these datasets, we use two tradeoff measures: censoring vs. representation fidelity and fairness vs. utility for downstream tasks, to amply demonstrate that multiple sensitive features can be effectively censored even as the resulting fair representations ensure accuracy for multiple downstream tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Peter Kairouz (75 papers)
  2. Jiachun Liao (11 papers)
  3. Chong Huang (26 papers)
  4. Maunil Vyas (1 paper)
  5. Monica Welfert (8 papers)
  6. Lalitha Sankar (97 papers)
Citations (15)