Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Multi-Modal Feature Embedding Approach to Diagnose Alzheimer Disease from Spoken Language (1910.00330v1)

Published 1 Oct 2019 in cs.LG, cs.CL, eess.AS, and stat.ML

Abstract: Introduction: Alzheimer's disease is a type of dementia in which early diagnosis plays a major rule in the quality of treatment. Among new works in the diagnosis of Alzheimer's disease, there are many of them analyzing the voice stream acoustically, syntactically or both. The mostly used tools to perform these analysis usually include machine learning techniques. Objective: Designing an automatic machine learning based diagnosis system will help in the procedure of early detection. Also, systems, using noninvasive data are preferable. Methods: We used are classification system based on spoken language. We use three (statistical and neural) approaches to classify audio signals from spoken language into two classes of dementia and control. Result: This work designs a multi-modal feature embedding on the spoken language audio signal using three approaches; N-gram, i-vector, and x-vector. The evaluation of the system is done on the cookie picture description task from Pitt Corpus dementia bank with the accuracy of 83:6

Citations (25)

Summary

We haven't generated a summary for this paper yet.