Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A coarse-grained deep neural network model for liquid water (1910.00252v2)

Published 1 Oct 2019 in physics.comp-ph, cond-mat.mtrl-sci, and physics.chem-ph

Abstract: We introduce a coarse-grained deep neural network model (CG-DNN) for liquid water that utilizes 50 rotational and translational invariant coordinates, and is trained exclusively against energies of ~30,000 bulk water configurations. Our CG-DNN potential accurately predicts both the energies and molecular forces of water; within 0.9 meV/molecule and 54 meV/angstrom of a reference (coarse-grained bond-order potential) model. The CG-DNN water model also provides good prediction of several structural, thermodynamic, and temperature dependent properties of liquid water, with values close to that obtained from the reference model. More importantly, CG-DNN captures the well-known density anomaly of liquid water observed in experiments. Our work lays the groundwork for a scheme where existing empirical water models can be utilized to develop fully flexible neural network framework that can subsequently be trained against sparse data from high-fidelity albeit expensive beyond-DFT calculations.

Summary

We haven't generated a summary for this paper yet.