Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Normalisation of Weights and Firing Rates in Spiking Neural Networks with Spike-Timing-Dependent Plasticity (1910.00122v1)

Published 30 Sep 2019 in cs.NE and q-bio.NC

Abstract: Maintaining the ability to fire sparsely is crucial for information encoding in neural networks. Additionally, spiking homeostasis is vital for spiking neural networks with changing numbers of weights and neurons. We discuss a range of network stabilisation approaches, inspired by homeostatic synaptic plasticity mechanisms reported in the brain. These include weight scaling, and weight change as a function of the network's spiking activity. We tested normalisation of the sum of weights for all neurons, and by neuron type. We examined how this approach affects firing rate and performance on clustering of time-series data in the form of moving geometric shapes. We found that neuron type-specific normalisation is a promising approach for preventing weight drift in spiking neural networks, thus enabling longer training cycles. It can be adapted for networks with architectural plasticity.

Citations (2)

Summary

We haven't generated a summary for this paper yet.