Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Q-learning for POMDP: An application to learning locomotion gaits (1910.00107v1)

Published 30 Sep 2019 in eess.SY and cs.SY

Abstract: This paper presents a Q-learning framework for learning optimal locomotion gaits in robotic systems modeled as coupled rigid bodies. Inspired by prevalence of periodic gaits in bio-locomotion, an open loop periodic input is assumed to (say) affect a nominal gait. The learning problem is to learn a new (modified) gait by using only partial noisy measurements of the state. The objective of learning is to maximize a given reward modeled as an objective function in optimal control settings. The proposed control architecture has three main components: (i) Phase modeling of dynamics by a single phase variable; (ii) A coupled oscillator feedback particle filter to represent the posterior distribution of the phase conditioned in the sensory measurements; and (iii) A Q-learning algorithm to learn the approximate optimal control law. The architecture is illustrated with the aid of a planar two-body system. The performance of the learning is demonstrated in a simulation environment.

Citations (1)

Summary

We haven't generated a summary for this paper yet.