Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

K-Metamodes: frequency- and ensemble-based distributed k-modes clustering for security analytics (1909.13721v1)

Published 30 Sep 2019 in cs.LG, cs.CR, and stat.ML

Abstract: Nowadays processing of Big Security Data, such as log messages, is commonly used for intrusion detection purposed. Its heterogeneous nature, as well as combination of numerical and categorical attributes does not allow to apply the existing data mining methods directly on the data without feature preprocessing. Therefore, a rather computationally expensive conversion of categorical attributes into vector space should be utilised for analysis of such data. However, a well-known k-modes algorithm allows to cluster the categorical data directly and avoid conversion into the vector space. The existing implementations of k-modes for Big Data processing are ensemble-based and utilise two-step clustering, where data subsets are first clustered independently, whereas the resulting cluster modes are clustered again in order to calculate metamodes valid for all data subsets. In this paper, the novel frequency-based distance function is proposed for the second step of ensemble-based k-modes clustering. Besides this, the existing feature discretisation method from the previous work is utilised in order to adapt k-modes for processing of mixed data sets. The resulting k-metamodes algorithm was tested on two public security data sets and reached higher effectiveness in comparison with the previous work.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com